
A Unified Model Representation of Machine
Learning Knowledge

J. G. Enrı́quez1,⇤, A. Martı́nez-Rojas1, D. Lizcano2

and A. Jiménez-Ramı́rez1

1Computer Languages and Systems Department. Escuela Técnica Superior de
Ingenierı́a Informática, Avenida Reina Mercedes, s/n, 41012, Sevilla. Spain
2Universidad a distancia de Madrid. Carretera de La Coruña, KM.38,500, vı́a de
Servicio, no 15, 28400, Collado Villalba, Madrid. Spain
E-mail: jgenriquez@us.es
⇤Corresponding Author

Received 20 December 2019; Accepted 14 April 2020;
Publication 03 June 2020

Abstract

Nowadays, Machine Learning (ML) algorithms are being widely applied in
virtually all possible scenarios. However, developing a ML project entails the
effort of many ML experts who have to select and configure the appropriate
algorithm to process the data to learn from, between other things. Since there
exist thousands of algorithms, it becomes a time-consuming and challenging
task. To this end, recently, AutoML emerged to provide mechanisms to
automate parts of this process. However, most of the efforts focus on applying
brute force procedures to try different algorithms or configuration and select
the one which gives better results. To make a smarter and more efficient
selection, a repository of knowledge is necessary. To this end, this paper
proposes (1) an approach towards a common language to consolidate the
current distributed knowledge sources related the algorithm selection in ML,
and (2) a method to join the knowledge gathered through this language in
a unified store that can be exploited later on, and (3) a traceability links
maintenance. The preliminary evaluations of this approach allow to create a

Journal of Web Engineering, Vol. 19 2, 319–340.
doi: 10.13052/jwe1540-9589.1929
© 2020 River Publishers



320 J. G. Enrı́quez et al.

unified store collecting the knowledge of 13 different sources and to identify
a bunch of research lines to conduct.

Keywords: Machine Learning, Automated Machine Learning, Knowledge
Representation, Model-Driven Engineering.

1 Introduction

Machine Learning (ML) entails the study of algorithms that automatically
improve through experience [18]. This kind of algorithms has been suc-
cessfully and broadly applied in the past [19] and nowadays is receiving
increasing attention due to the affordable access to bigger computation power
of machines.

A ML project requires selecting an appropriate algorithm to process
the data to learn from, which is typically named creating the data model.
However, there are thousands of algorithms under the paradigm of ML, each
of them tailored to some specific tasks or contexts. In addition, many of these
algorithms offer a different set of parameters to be configured (e.g., selecting
the number of layers in a neural network).

Many existing approaches focus on the latter task, i.e., supporting the
user after the algorithm selection is done, and few of them recommend an
algorithm always after the user has provided the dataset. As an example, the
recent research area of AutoML [28] aims to automate the different steps of
ML projects. Nonetheless, such approaches neglect the early stages of the
project. Many of them just provide a brute force mechanism that runs several
algorithms in later stages of the project, i.e., when the dataset is ready. Thus,
little effort has been done to support the user in the algorithm selection in an
efficient manner (i.e., without applying brute force) and based on the problem
characteristics (i.e., the early information).

The algorithm selection is specifically challenging since the existing
knowledge regarding this task is distributed across different sources and each
of them is specified in a non-standard manner, thus, making it difficult to con-
solidate information from different sources, i.e., the name of the algorithms
—or family of algorithms—, the selection criteria, and the characteristics of
the problem that affect the selection are heterogeneous (cf. Figure 1).

To reduce the risk of taking inaccurate decisions due to a lack of informa-
tion, a central repository of the ML Knowledge which stores the information
in a structured way is required. In order to address this problem, this paper
proposes (cf. Figure 2), on the one hand, a unified language for representing


	00_FM
	foreword
	01_Jose_M_Conejero
	Introduction and Motivation
	Background and Related Work
	Sankey Diagrams
	Tools Comparison

	Livesankey Architecture and Implementation
	Architecture
	Implementation
	NetworkD3 modifications
	Data Input
	Sorting nodes of the same dimension


	Application Case
	Threats to validity
	Conclusions

	02_In-Young_Ko
	Introduction
	Service-oriented CPS Application Framework
	CPS Framework Architecture
	DevOps Cycle of CPS Applications
	Activities of Development Phases
	Activities of Operation Phases
	Current Research Focuses


	Human-centric and Environment-aware CPS Software Testing
	Environment-aware Regression Testing for CPS Applications
	Effect-driven and Dynamic Quality-evaluation of CPS Services
	Finding Cognitive Bugs in CPS Applications

	Evaluation
	Testing Environment Prioritization
	Visual Service Effectiveness Metric
	Cognitive Load Assessment

	Related Work
	Conclusion

	03_Suilen_H_Alvarado
	Introduction
	Background and Related Work
	A Domain-specific Language for Web GIS
	GIS architecture and main constructs
	GIS-DSL
	Use example

	Implementation of the DSL
	GIS-DSL parser
	Code generation engine
	Generated code

	Case Study and Evaluation
	Sample project 1: points of interest
	Sample project 2: local civil infrastructure management
	Results

	Conclusions

	04_Amira_Shoukry
	Introduction
	Related Work
	Methodology
	SO ensemble method
	ML ensemble method

	Evaluation
	The domain specific lexicons
	The used datasets
	Experiments and results
	SO ensemble learning
	ML ensemble method
	Different domain and SO ensemble


	Conclusions

	05_N_Sanchez-Gomez
	Introduction
	Context
	Blockchain and smart contract
	Blockchain oracle
	Software testing and early testing
	Model-based software development

	Hypothesis
	Approach to Model-based Smart ContractDevelopment and Testing
	Conclusions And Future Work

	06_Andreas_Hinderks
	Introduction
	Background and Related Work
	Research Methodology
	Determine the attributes
	Selection of the questionnaire
	First evaluation
	Object of study
	Purpose
	Quality focus

	Context

	Results
	Reliability
	Importance-performance analysis
	Analysis of intensity of use

	Discussion
	Comparing UEQ analysis and IPA
	Enhancement of our approach
	Limitations

	Conclusion and Future Work

	07_Jesus_Moran
	Introduction
	Flakiness in Testing Web Applications
	Related Work
	Classification of flakiness
	Detection of a flaky test
	Localization of the root cause of flakiness
	Fixing the flakiness

	FlakyLoc: Localization of the Root Cause of Flakiness
	Characterization
	Execution
	Analysis

	Evaluation
	Characterization
	Execution
	Analysis
	Fixing flakiness

	Discussion and Threats to Validity
	Conclusions and Future Work

	08_Leticia_Morales_Trujillo
	Introduction
	Background and Objectives
	Proposed Framework
	Discovery
	Development
	Operation

	Related Work
	Conclusions
	Future Works

	09_J-G_Enriquez
	Introduction
	Motivating Example
	Background
	Machine learning
	Model-based engineering

	Contribution
	A common language for recommendations of ML algorithms
	Terms mappings
	Towards a unified knowledge store

	Conclusions and Future Work


