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Abstract

Nowadays, Machine Learning (ML) algorithms are being widely applied in
virtually all possible scenarios. However, developing a ML project entails the
effort of many ML experts who have to select and configure the appropriate
algorithm to process the data to learn from, between other things. Since there
exist thousands of algorithms, it becomes a time-consuming and challenging
task. To this end, recently, AutoML emerged to provide mechanisms to
automate parts of this process. However, most of the efforts focus on applying
brute force procedures to try different algorithms or configuration and select
the one which gives better results. To make a smarter and more efficient
selection, a repository of knowledge is necessary. To this end, this paper
proposes (1) an approach towards a common language to consolidate the
current distributed knowledge sources related the algorithm selection in ML,
and (2) a method to join the knowledge gathered through this language in
a unified store that can be exploited later on, and (3) a traceability links
maintenance. The preliminary evaluations of this approach allow to create a
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unified store collecting the knowledge of 13 different sources and to identify
a bunch of research lines to conduct.

Keywords: Machine Learning, Automated Machine Learning, Knowledge
Representation, Model-Driven Engineering.

1 Introduction

Machine Learning (ML) entails the study of algorithms that automatically
improve through experience [18]. This kind of algorithms has been suc-
cessfully and broadly applied in the past [19] and nowadays is receiving
increasing attention due to the affordable access to bigger computation power
of machines.

A ML project requires selecting an appropriate algorithm to process
the data to learn from, which is typically named creating the data model.
However, there are thousands of algorithms under the paradigm of ML, each
of them tailored to some specific tasks or contexts. In addition, many of these
algorithms offer a different set of parameters to be configured (e.g., selecting
the number of layers in a neural network).

Many existing approaches focus on the latter task, i.e., supporting the
user after the algorithm selection is done, and few of them recommend an
algorithm always after the user has provided the dataset. As an example, the
recent research area of AutoML [28] aims to automate the different steps of
ML projects. Nonetheless, such approaches neglect the early stages of the
project. Many of them just provide a brute force mechanism that runs several
algorithms in later stages of the project, i.e., when the dataset is ready. Thus,
little effort has been done to support the user in the algorithm selection in an
efficient manner (i.e., without applying brute force) and based on the problem
characteristics (i.e., the early information).

The algorithm selection is specifically challenging since the existing
knowledge regarding this task is distributed across different sources and each
of them is specified in a non-standard manner, thus, making it difficult to con-
solidate information from different sources, i.e., the name of the algorithms
—or family of algorithms—, the selection criteria, and the characteristics of
the problem that affect the selection are heterogeneous (cf. Figure 1).

To reduce the risk of taking inaccurate decisions due to a lack of informa-
tion, a central repository of the ML Knowledge which stores the information
in a structured way is required. In order to address this problem, this paper
proposes (cf. Figure 2), on the one hand, a unified language for representing
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