dc.contributor.authorDíaz Palencia, José Luis
dc.contributor.authorRoa González, Julián
dc.contributor.authorRahman, Saeed
dc.contributor.authorNaranjo Redondo, Antonio
dc.date.accessioned2022-05-24T11:43:55Z
dc.date.available2022-05-24T11:43:55Z
dc.date.issued2022-04-05
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/20.500.12226/1171
dc.description.abstractThis work provides an analytical approach to characterize and determine solutions to a porous medium system of equations with views in applications to invasive-invaded biological dynamics. Firstly, the existence and uniqueness of solutions are proved. Afterwards, profiles of solutions are obtained making use of the self-similar structure that permits showing the existence of a diffusive front. The solutions are then studied within the Travelling Waves (TW) domain showing the existence of potential and exponential profiles in the stable connection that converges to the stationary solutions in which the invasive species predominates. The TW profiles are shown to exist based on the geometry perturbation theory together with an analytical-topological argument in the phase plane. The finding of an exponential decaying rate (related with the advection and diffusion parameters) in the invaded species TW is not trivial in the nonlinear diffusion case and reflects the existence of a TW trajectory governed by the invaded species runaway (in the direction of the advection) and the diffusion (acting in a finite speed front or support).es
dc.description.sponsorshipUDIMAes
dc.language.isoenes
dc.titleRegularity, Asymptotic Solutions and Travelling Waves Analysis in a Porous Medium System to Model the Interaction between Invasive and Invaded Specieses
dc.typearticlees
dc.description.course2021-22es
dc.identifier.doihttps:// doi.org/10.3390/math10071186
dc.issue.number7es
dc.journal.titleMathematicses
dc.page.initial1es
dc.page.final19es
dc.publisher.departmentDepartamento de Magisterio de Educación Primariaes
dc.publisher.facultyFacultad de Ciencias de la Salud y de la Educaciónes
dc.publisher.group(GI-20/1) Observatorio de Innovación Educativa (OIE)es
dc.relation.projectIDPIDIMAes
dc.rights.accessRightsopenAccesses
dc.subject.keywordPorous medium equationes
dc.subject.keywordTravelling waveses
dc.subject.keywordGeometric perturbationes
dc.subject.keywordNonlinear diffusiones
dc.subject.keywordAdvectiones
dc.volume.number10es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem