dc.contributor.authorDíaz Palencia, José Luis
dc.contributor.authorRoa, Julián
dc.contributor.authorSánchez Sánchez, Almudena
dc.date.accessioned2022-06-16T11:58:28Z
dc.date.available2022-06-16T11:58:28Z
dc.date.issued2022-05-18
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/20.500.12226/1187
dc.description.abstractThe goal of the present study is to characterize solutions under a travelling wave formulation to a degenerate Fisher-KPP problem. With the degenerate problem, we refer to the following: a heterogeneous diffusion that is formulated with a high order operator; a non-linear advection and non-Lipstchitz spatially heterogeneous reaction. The paper examines the existence of solutions, uniqueness and travelling wave oscillatory properties (also called instabilities). Such oscillatory behaviour may lead to negative solutions in the proximity of zero. A numerical exploration is provided with the following main finding to declare: the solutions keeps oscillating in the proximity of the null stationary solution due to the high order operator, except if the reaction term is quasi-Lipschitz, in which it is possible to define a region where solutions are positive locally in time.es
dc.language.isoenes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleStudy of Solutions for a Degenerate Reaction Equation with a High Order Operator and Advectiones
dc.typearticlees
dc.description.course2021-22es
dc.identifier.doi10.3390/math10101729
dc.issue.number10es
dc.journal.titleMathematicses
dc.page.initial1es
dc.page.final18es
dc.publisher.facultyFacultad de Ciencias de la Salud y de la Educaciónes
dc.publisher.group(GI-20/1) Observatorio de Innovación Educativa (OIE)es
dc.rights.accessRightsopenAccesses
dc.subject.keywordhomotopyes
dc.subject.keywordhigh order diffusiones
dc.subject.keywordFisher-KPPes
dc.subject.keywordtravelling waveses
dc.subject.keywordheterogeneous non-Lipschitz reactiones
dc.volume.number10es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional